Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Chem Lab Med ; 60(9): 1478-1485, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2263163

ABSTRACT

OBJECTIVES: Antigen tests are an essential part of SARS-CoV-2 testing strategies. Rapid antigen tests are easy to use but less sensitive compared to nucleic acid amplification tests (NAT) and less suitable for large-scale testing. In contrast, laboratory-based antigen tests are suitable for high-throughput immunoanalyzers. Here we evaluated the diagnostic performance of the laboratory-based Siemens Healthineers SARS-CoV-2 Antigen (CoV2Ag) assay. METHODS: In a public test center, from 447 individuals anterior nasal swab specimens as well as nasopharyngeal swab specimens were collected. The nasal swab specimens were collected in sample inactivation medium and measured using the CoV2Ag assay. The nasopharyngeal swab specimens were measured by RT-PCR. Additionally, 9,046 swab specimens obtained for screening purposes in a tertiary care hospital were analyzed and positive CoV2Ag results confirmed by NAT. RESULTS: In total, 234/447 (52.3%) participants of the public test center were positive for SARS-CoV-2-RNA. Viral lineage B1.1.529 was dominant during the study. Sensitivity and specificity of the CoV2Ag assay were 88.5% (95%CI: 83.7-91.9%) and 99.5% (97.4-99.9%), respectively. Sensitivity increased to 93.7% (97.4-99.9%) and 98.7% (97.4-99.9%) for swab specimens with cycle threshold values <30 and <25, respectively. Out of 9,046 CoV2Ag screening tests from hospitalized patients, 21 (0.2%) swab specimens were determined as false-positive by confirmatory NAT. CONCLUSIONS: Using sample tubes containing inactivation medium the laboratory-based high-throughput CoV2Ag assay is a very specific and highly sensitive assay for detection of SARS-CoV-2 antigen in nasal swab specimens including the B1.1.529 variant. In low prevalence settings confirmation of positive CoV2Ag results by SARS-CoV-2-RNA testing is recommended.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , RNA , Sensitivity and Specificity
2.
IJID Reg ; 3: 106-113, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2179645

ABSTRACT

Background: : SARS-CoV-2 variants have been emerging and are shown to increase transmissibility, pathogenicity, and decreased vaccine efficacies. The objective of this study was to determine the distribution, prevalence, and dynamics of SARS-CoV-2 variants circulating in Brazzaville, the Republic of Congo (ROC). Methods: : Between December 2020 and July 2021, a total of n=600 oropharyngeal specimens collected in the community were tested for COVID-19. Of the samples tested, 317 (53%) were SARS-CoV-2 positive. All samples that had a threshold of Ct <30 (n=182) were sequenced by next-generation sequencing (NGS), and all complete sequenced genomes were submitted to GISAID; lineages were assigned using pangolin nomenclature and a phylogenetic tree was reconstructed. In addition, the global prevalence of the predominant lineages was analysed using data from GISAID and Outbreak databases. Results: : A total of 15 lineages circulated with B.1.214.2 (26%), B.1.214.1 (19%) and B.1.620 (18%) being predominant. The variants of concern (VOC) alpha (B.1.1.7) (6%) and for the first time in June delta (B.1.617.2) (4%) were observed. In addition, the B.1.214.1 lineage first reported from ROC was observed to be spreading locally and regionally. Phylogenetic analysis suggests that the B.1.620 variant (VUM) under observation may have originated from either Cameroon or the Central African Republic. SARS-CoV-2 lineages were heterogeneous, with the densely populated districts of Poto-Poto and Moungali likely the epicenter of spread. Conclusion: : Longitudinal monitoring and molecular surveillance across time and space are critical to understanding viral phylodynamics, which could have important implications for transmissibility and impact infection prevention and control measures.

3.
Int J Infect Dis ; 122: 427-436, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907179

ABSTRACT

OBJECTIVES: Host genetic factors contribute to the variable severity of COVID-19. We examined genetic variants from genome-wide association studies and candidate gene association studies in a cohort of patients with COVID-19 and investigated the role of early SARS-CoV-2 strains in COVID-19 severity. METHODS: This case-control study included 123 COVID-19 cases (hospitalized or ambulatory) and healthy controls from the state of Baden-Wuerttemberg, Germany. We genotyped 30 single nucleotide polymorphisms, using a custom-designed panel. Cases were also compared with the 1000 genomes project. Polygenic risk scores were constructed. SARS-CoV-2 genomes from 26 patients with COVID-19 were sequenced and compared between ambulatory and hospitalized cases, and phylogeny was reconstructed. RESULTS: Eight variants reached nominal significance and two were significantly associated with at least one of the phenotypes "susceptibility to infection", "hospitalization", or "severity": rs73064425 in LZTFL1 (hospitalization and severity, P <0.001) and rs1024611 near CCL2 (susceptibility, including 1000 genomes project, P = 0.001). The polygenic risk score could predict hospitalization. Most (23/26, 89%) of the SARS-CoV-2 genomes were classified as B.1 lineage. No associations of SARS-CoV-2 mutations or lineages with severity were observed. CONCLUSION: These host genetic markers provide insights into pathogenesis and enable risk classification. Variants which reached nominal significance should be included in larger studies.


Subject(s)
COVID-19 , Chemokine CCL2 , Transcription Factors , COVID-19/genetics , Case-Control Studies , Chemokine CCL2/genetics , Genetic Loci , Genome-Wide Association Study , Humans , SARS-CoV-2 , Transcription Factors/genetics
4.
Int J Infect Dis ; 105: 735-738, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1141903

ABSTRACT

OBJECTIVE: The aim of this study was to carry out whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using samples collected from Congolese individuals between April and July 2020. METHODS: Ninety-six samples were screened for SARS-CoV-2 using RT-PCR, and 19 samples with Ct values <30 were sequenced using Illumina Next-Generation Sequencing (NGS). The genomes were annotated and screened for mutations using the web tool 'coronapp'. Subsequently, different SARS-CoV-2 lineages were assigned using PANGOLIN and Nextclade. RESULTS: Eleven SARS-CoV-2 genomes were successfully sequenced and submitted to the GSAID database. All genomes carried the spike mutation D614G and were classified as part of the GH clade. The Congolese SARS-CoV-2 sequences were shown to belong to lineage B1 and Nextclade 20A and 20C, which split them into distinct clusters, indicating two separate introductions of the virus into the Republic of Congo. CONCLUSION: This first study provides valuable information on SARS CoV-2 transmission in the central African region, contributing to SARS CoV-2 surveillance on a temporal and spatial scale.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Congo , High-Throughput Nucleotide Sequencing , Humans , Mutation , Whole Genome Sequencing
5.
Clin Chem Lab Med ; 58(12): 2113-2120, 2020 08 03.
Article in English | MEDLINE | ID: covidwho-693447

ABSTRACT

Objectives Serological assays for detection of SARS-CoV-2 antibodies are increasingly used during the COVID-19 pandemic caused by the SARS-Coronavirus-2. Here we evaluated the analytical and clinical performance of three commercially available SARS-CoV-2 antibody assays. Methods A total of 186 samples from 58 patients with PCR-confirmed COVID-19 infection were measured using SARS-CoV-2 antibody assays by Siemens Healthineers, Roche Diagnostics and Euroimmun. Additionally, 123 control samples, including samples collected before December 2019 and samples with potential cross-reactive antibodies were analyzed. Diagnostic specificity, sensitivity, agreement between assays and ROC curve-derived optimized thresholds were determined. Furthermore, intra- and inter-assay precision and the potential impact of interfering substances were investigated. Results SARS-CoV-2 antibody assays by Siemens and Roche showed 100% specificity. The Euroimmun assay had 98 and 100% specificity, when borderline results are considered as positive or negative, respectively. Diagnostic sensitivity for samples collected ≥14 days after PCR-positivity was 97.0, 89.4 and 95.5% using the Siemens, Roche and Euroimmun assay, respectively. Sensitivity of the Roche assay can be increased using an optimized cut-off index (0.095). However, a simultaneous decrease in specificity (98.4%) was observed. Siemens showed 95.8 and 95.5% overall agreement with results of Euroimmun and Roche assay, respectively. Euroimmun and Roche assay exhibited 92.6% overall agreement. Discordant results were observed in three COVID-19 patients and in one COVID-19 patient none of the investigated assays detected antibodies. Conclusions The investigated assays were highly specific and sensitive in detecting SARS-CoV-2 antibodies in samples obtained ≥14 days after PCR-confirmed infection. Discordant results need to be investigated in further studies.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Serologic Tests/methods , Antibodies, Viral/immunology , Automation , Humans , ROC Curve , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL